
• The cost of bringing a drug to market depends on how 
quickly a candidate drug can be “discovered” and 
evaluated to ensure safety and effectiveness 

• In this work we develop a method for predicting whether a 
given drug and protein compound will “bind”. 

• Our aim is to select a set of features to predict drug-
protein interactions

Background and Motivation

• Our dataset consists of 361,786 protein-drug molecule
combinations from the Directory of Useful Decoys
Enhanced [4] subset of kinases which includes both
known active compounds and generated decoys for 26 
kinases. We collected the following features for our
dataset:

• Binding features: Vina MPI [2]
• Drug features: Dragon [1]  
• Protein features: ExPasy [6], Porter,PaleAle 4.0 

[5], & PROFEAT-Protein Feature Server [7] 
• Pocket features* [8]

• 1:50 ratio of positive to negative training examples 
• 5432 features before selection pipeline, reduced to a 

set of 1260 which are examined using PCA.
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Conclusions and Future Work
• We are able to significantly reduce the feature set and identify the 

important properties of the interaction to make accurate predictions
• This work helps lay the foundation for future work that will ask more 

specific questions regarding protein-drug molecule interactions
• Can we expand our model to include multiple protein binding 

pockets to understand more complex interactions?
• Can we develop an effective method to predict adverse drug 

reactions based upon a drug molecule binding to multiple proteins?
• Can we use secondary structure information about the protein to 

improve our results?
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Reduction N Features Precision Recall F1-Score Positive 
Precision

Positive F1

Step 1 1260 0.99 0.99 0.99 0.99 0.87
Step 2 284 0.99 0.99 0.99 0.94 0.86
Step 3 59 0.99 0.99 0.99 0.93 0.85
Step 4 15 0.99 0.99 0.99 0.68 0.74

Table 1: Random Forest Performance

Reduction N Features Precision Recall F1-Score Positive 
Precision

Positive F1

Step 1 1260 0.97 0.87 0.91 0.16 0.26
Step 2 284 0.97 0.84 0.89 0.12 0.22
Step 3 59 0.97 0.85 0.90 0.13 0.22
Step 4 15 0.97 0.79 0.86 0.10 0.17

Table 2: Logistic Regression Performance

1. Preprocessing: Impute data using mean for each feature, 
then normalize each feature to unit length

2. Random Forest Feature Extraction: train a random forest, 
using randomized grid search. Using the feature importances
of the optimal random forest classifier, create a reduced 
feature set from the features with above mean importance.

3. Create 80/20 training and testing stratified split of the data 
using only the “relevant” features 

4. Train classification models on the reduced feature 
set, using randomized grid search to select the 
optimal model parameters.

5. Test classification models on the reduced feature 
set 

6. Repeat until a minimal set of features are selected
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Given the initial set of 5432 features, we are able to reduce this set by 2 orders of magnitude while retaining nearly identical 
performance on the classification task. We evaluate a random forest and logistic regression on each reduced set.

This study focuses on kinases. Kinase inhibitors are the largest 
class of new cancer therapies. Selective inhibition is difficult due 
to high sequence similarity, leading to off-target interactions and 
side-effects. Pictured here human c-SRC.

*to be included


